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ABSTRACT

The fractional order model that represents the spread of Examination misconduct using
compartments of the population of honest students (susceptible), those lightly involved in
misconduct (exposed), seriously involved ones (infected), and quitters (removed) is provided. The
fractional order derivative is considered in the Caputo sense. To determine the epidemic forecast
and persistence, we calculate the reproduction number. Analyzing the stability of this scheme
ensures a non-negative and unique solution within the defined domain (0,1). Employing the
Laplace-Adomian Decomposition Method aids in estimating the solution for the nonlinear
fractional differential equations. Utilizing infinite series helps derive solutions for these equations,
ensuring convergence to their precise values. The results obtained align with outcomes from the
traditional Differential Transformed Method. Finally, numerical results and an outstanding graphic
simulation are presented.

Keywords: Fractional Order, Numerical Solution, Examination Misconduct, Laplace Adomian
Decomposition Method

INTRODUCTION

Education stands as a fundamental driver of socioeconomic progress within any nation. Assessing
the educational system's performance periodically is accomplished through examinations.
Education equips individuals with skills and competencies crucial for the job market, enhancing
their abilities. Therefore, examinations play a pivotal role in a country's educational advancement
and overall development (Asante-Kyei & Nduro (2014) & Amadi & Opuiyo (2018)).
Acknowledging the significance of quality education is essential for societal progress. Embracing
this notion early enables a smoother adaptation to future living and work scenarios. However,
Nigeria's educational system faces a persistent challenge - the disturbing trend of examination
misconduct (Udofia & Sambo (2021) & Chukwunwogor et al (2013)).

Examination misconduct encompasses actions by examinees, examiners, administrators, parents,
or others that contravene prescribed examination regulations. Cheating during exams, theft of
question papers, impersonation, disruptions during exams, obstruction of supervision, forgery of
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result slips, breach of duty, conspiracy, and tampering or concealing other students' materials
constitute examination misconduct (Akunne et al (2021) & Anyamene et al (2015)). Essentially,
any dishonest, deceitful, or improper behavior before, during, or after an examination, breaching
stipulated rules, falls under examination misconduct. This prevalence in Nigeria significantly
undermines the country's educational standards and quality. The situation is concerning as it affects
students' academic and social performance adversely.

Extensive literature has explored the causes, issues, and associated factors of examination
misconduct ((Asante-Kyei & Nduro (2014), Amadi & Opuiyo (2018), Udofia & Sambo (2021),
Chukwunwogor et al (2013)), Akunne et al (2021), Anyamene et al (2015) & Ayoade & Farayola
(2020),). However, as far as our knowledge extends, (Abdullahi & Sule (2021)) have developed a
mathematical model aimed at managing examination misconduct. Their model categorizes
examination misconduct into compartments comprising honest students (susceptible), those
marginally involved in misconduct (exposed), heavily involved individuals (infected), and those
who have discontinued such behavior (removed).

MODEL DESCRIPTION

A deterministic compartmental modeling strategy was utilized to devise an examination
misconduct model, categorizing the total student population N, (¢),at a given time into four
subgroups: susceptible students (honest) S, exposed students (lightly involved in examination
misconduct) £, infected students (highly involved in examination misconduct) /,, and removed

students (quitters) R, . Hence the total population is given by:
N, =S +E +1,+R,

In this model:

e Susceptible students enter the population consistently through recruitment (admission) at
a steady rate A, . Their numbers decline when they interact with either exposed or infected
students at a rate 3 ( E + Ie), and g defined as the force of infection. These susceptible

individuals experience natural death at a specific rate u .

ds,

dt All_(ﬂ(Ee+]e)+/l’l)Se

e Exposed students, lightly involved in examination misconduct, increase as susceptible
students marginally engage in such behavior (e.g., copying from others) at a rate

p (Ee +Ie). Due to the gradual process of quitting misconduct, some highly involved
students might revert to the exposed class at a rate y. The population of exposed students

decreases when transitioning to the highly involved class at a rate J , through natural death
at a rate g, or upon quitting examination misconduct completely at a rate k. Thus,
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dE,

- =B(E,+1,)S,+ 1, —(u+3+k)E,

e Infected students, highly involved in examination misconduct, stem from those lightly
involved at arate O . They decrease due to natural death at a rate x and a decline in lightly
involved students at a rate y. Moreover, their population diminishes due to punitive

measures like imprisonment or expulsion at a rate z4,. Yields,

dl,
dt

= 5Ee _(:U‘"/uo +7/)Ie
e Removed students, those who quit involvement in examination misconduct, arise from
lightly involved students at a rate k and decrease due to natural death at a rate 1.

dR,
dt

= kE, - IR,

This descriptive narrative culminates in a system of differential equations that captures the
dynamics and transitions among these distinct student subgroups within the context of examination
misconduct.

B A-(p(E+ D)+ p)s

Cfi—f=ﬂ(E+l)S+;/I—(y+5+k)E

o (D
5_5E—(ﬂ+ﬂo +7)1

dR

Z_kE -

dt He

The fusion of the Adomain decomposition technique with the Laplace transform has resulted in a
significant approach termed as the Laplace Adomain decomposition method (LADM), first
proposed by Adomian in 1980. This method demonstrates effective capabilities in solving various
types of differential equations. Our interest in the applications of fractional calculus and LADM
has prompted an exploration into the numerical solution of the coronavirus model. Within this
model, the Caputo derivative serves as a pivotal differential operator. We have compiled
established definitions and findings from existing literature sources (Haq et al., 2017, and Farman,
et al., 2018), which will be utilized extensively in this study.

Preliminaries (Basic Theorems)

Definition 1. The Caputo fractional order derivative of a function y on the interval [0, T] is
defined by
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f n—a—1

[=s)  y"(s)ds @)

0

CDﬁy(f):m

wheren =[a]+1 and [a] represnt the Integer part of &

The Riemann-Liouville derivative has drawbacks, notably that the fractional derivative of a
constant doesn't yield zero. Consequently, we opt for Caputo's definition due to its suitability for

handling initial conditions in fractional differential equations (Farman et al., 2018).

Definition 2 Laplace transform of Caputo derivative as

n—1

L{"D“y(t)} :s”’y(s)—Zs“’k’ly(k) (0),n-1<a<n,neN 3)

k=0

The fractional system of differential equations represents the new differential equation system, and
they are provided as follows.

D S(t)= A~ pS(e)E(t)- S ()1 (¢)- S )
D*E(t)=BS(t)E(t)- pS(e)I(t)+ I — (1 + S+ k)E(r)
D™ 1(t)=SE(r)= (u+ pty + 7)1 (¢)

D*R(t)=kE(t)— uR(¢)

Wherever, o« € (01] whilst all other parameters are positive parameters and the given initial

(4)

conditions are

)

Stability Analysis and Equilibria

Disease-free equilibrium (DFE)

The model (4) has a DFE, obtained by setting the right-hand sides of the equations in (4) to zero,
given by
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D*S(t)=0

D™E(t)=0 ©)

D*I(t)=

D*R(t)=0

E,=(s".E".I"\R")= (A,O,O,Oj (7)
y7]

Theorem 1: The DFE of E, is asymptotically stable (LAS) ifR, <l,and unstable if R >1.
Reproductive number (Abdullahi et al., 2015 & Yakubu et al., 2021): The threshold result of this
equilibrium is

A A

F:ﬂ; ﬂ,u (8)
0 0

V:(,u+5+k) -y ©)

—6 (t+p,+7)

The threshold epidemiological of those involved in examination misconduct, denoted by

R, = p(FV"),where p denotes the spectral radius, is given by

ﬂA(ﬂ+ﬂ0 +7+5) (10)

R =
Ol + (g + )+ (S k) +ky)

Endemic equilibrium point (EEP)
Next, conditions for the existence of endemic equilibria for the model (4) are explored. Let
l?1 — (S**,E**,[**,R**)

be the arbitrary endemic equilibrium of model (4), in which at least one of the infected components
of the model is non-zero. Setting the right-hand sides of the equations in (4) to zero gives the
following expressions.
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Y0 — ki,

S**:_—’
Bk, +5)

vk (Suy — pke, + APk, + ASB)

£ =- TR ; (11)
Bl ys —kik + 8%y — Sk, )

[ 5(Suy — ke, + APk, + ASB)
Pl ys —kik + 8y — Sk, )

pre RSy — pikk, + Ak + ASB)
Bleys — ki + 8y — Sk, Ju
where k=u+0o+k

ky=p+p +y

Furthermore, using Theorem 2 of (Van den Driessche & Watmough (2002) & Sule, & Abdullah
(2019)) the following result is established.

Non-negative solution

let R* = {x eR* x> 0}
and

x(e)=(S(0). E(e).1(e). RQ))

Lemma: Let A(x) €Cla,b] and D“h(x) €[a,b] for 0<a <1. Then

h(x)=h(a)+ ( ! D*h(n)(x—a)*,with 0<7n < x for x € (a,b]

a+1)!
Theorem 2: There is a unique solution for the initial value problem given by (6), and the solution

remains in R*,x >0.( Yakubu et al., 2021 & Mamuda et al., 2017)

Proof: Aim is to show that the domain R*, x > 0. is positively invariant. Since
D S(t) g0 =A 20,

D E(t) y0 = BS()I(t)+71(£)2 0
D I(t) 0 = OE(£) 20,

) (12)
D R(t) yoy0=kE(t) 2 0.

The non-negative solution satisfied the vector field point into R*
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The Laplace-Adomian Decomposition Method

This section focuses on outlining the overall process of the model (4) incorporating the provided
initial conditions. Employing the Caputo fractional derivative system involves applying the

Laplace transform to both sides of model (4), resulting in:

t~

(D7 5(1)} = LA - BS(O)E) - BS()1(e)- S (1)}
iD= E)} = L{A ) ()ws(:)z@)w() (u+5+K)EQ)}
L= 1(0)} = {E ()~ (s + 11y + )I(0)}

L{D“R(t >}— {kE() 70)

This implies that

s L{D™ ()}~ 575(0) = LA - BS()E() - BS()1(2)- S (0)}

s L{D“ E(1)}- 57 E(0) = LYBSEQ)+ A1)+ 71(0) - (1 + 5 + K)E()
§%L{D® 1(1)} - %7 1(0) = L{SE() - (1 + 1, +7)1(0)}

S« LD R(1)}~ 5% R(0) = LIKE(t) ~ uR(r)}

Using the initial conditions and taking inverse Laplace transform to system (14), we have

S(t)=5(0)=L7{A = pS(e)E() - pS(e)i(r)— (o)}
E(t)=E(0)= L{BS()E()+ pS()I(e)+ y1(e) = (u+ 5+ K)E(0)}
1(t)=1(0)= L™ {GE(e) — (pt + ay + )1 (2)}

R(t)= R(0) = L™ {kE(e) - pR(1);

Using the values of initial condition in (15), we get

S(t)= N, = LA = pS()E(r) - pS(e)1 ()~ S (1)}

E(t)= N, = LH{pS()E()+ AS@) () + 71 (1)~ (1 + 5 + K)E();
1(t)= Ny = LHOE()— (u+ py + (0}

R()= N, = L™ {kE(r)- uR(t)}

Assume that the solutions, S (t), E (t),] (t),R(t) in the form of infinite series are given by

(13)

(14)

(15)

(16)
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n=0 (17)

While the nonlinear term involved in the model are S(I)E(t), S(t)] (t)and are decomposed as
follows

=
I
(=}

(18)

(%)
—_
N

=

~
~

Il
gk

o
=

=
Il
(=]

where 4 and B, are the Adomian polynomials defined as
A, = A8, ANE, [A=0
e £S5

B A8, A1, [A=0
e

The first three polynomials are given by

4y S() o (0),
S, (B, (1)+ 5, (0)E, (1)
o (ES(

—2S z) 1)+28,(t)E,(t)+25S,(2)E,(7)

(19)

Bl :So(l)ll(t)"'sl t)Io(t) (20)
B, =28, (), (¢)+28,(2)1,(z)+ 28, ()1, (¢)

Using (17), (19) in model (15), yields
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1)
1
310} =220 L o0 O
2 R
SR 0= | L Lt~ o)
Matching the two sides of (21) yields the following iterative algorithm:
N]
L(SO)ZT
AN B By H
L(Sl)_ % g9 AO e BO e L{SO (t)}
A Py By #
L(Sz)_sa - 4 SaBl SQL{Sl(t)} (22)
A By By o #
Ls)= 2L B Bifs ) ne
N2
L(EO)_T
o+k
L(E1)=S£,ZA0_S%BOJFS%L{II(O}_(#:O:_F )L{EO( )}
By Pyp.v _(prd+k)
=LA L L) g ) @
B Y;; 7 _(,u+5+k)
L(E)—S 4,8 +SaL{I,(t)} = L{E, (1)} n=21
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L(1,)=2
L) =L, () D)
L) =S e (o) A ) (24)

L(Ro) - %

L(R) = L{E, (1)} -2 L{R, (1)}

L(R)=—L{E (0} -2 LR (1) (25)
L(R) =5 L{E (1)~ L{R (1) n=1

Taking Laplace inverse of (22-25) and considering first three terms at different values of

a =1,0.95,0.85and 0.75: and using the following values:

Table 1: Description of variables for involved in examination misconducts model

Parameter Description Values
S Susceptible students 600
E Exposed student 250
1 Infected students 100
R Removed students 50

Table 2: Description of parameters for involved in examination misconducts model

Parameter Description Estimated References
value
A Recruitment rate of students 0.05 [8]
y) Force of infection 0.23 [8]
H Natural death of students 0.0004 [8]
Ly Death due to imprisonment and 0.05 [8]
expulsion.
v Rate of progression from highly 0.04 [8]

involved in examination misconducts
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o Rate of progression from lightly 0.03 (8]
involved in examination misconducts

k Rate of progression from lightly 0.09 (8]
involved in examination misconducts
students to quitters

From o =1, (22—25) obtained

S(t)=600-48302.350¢ —1.38784649010°¢% +1.52269110°£°
E(t)=250+48290.500¢ +1.38615606010°£* +1.5229100000010* £°
1(t)=100—6.900¢ + 724.8543000¢* +13825.42453¢°
R(t)=50+9.800¢ + 965.7904000¢* +18474.54567¢°

From o =0.95, (22 — 25) obtained

S(t)=600—492942.11550¢"° —1.38784649010°¢"* +1.52269178310°+>*
E(t)=250+49282.0221¢"” +1.38615606010°¢"" +1.52291000010°%¢**°
1(t)=100-7.041673892¢"" +724.8543000¢"* +13825.42453¢>*
R(t)=50+10.00121799"" +965.7904000z " +18474.54567t**

From o =0.85, (22 - 25) obtained

S(¢)=600—-51080.56166:"* —1.38784649010°1"™ +1.52269178310%1**
E(r)=250+51068.03008:"* +1.38615606010°1'"* +1.52291000010°¢***
1(r)=100-7.296868070** +724.8543000'"° +13825.42453/**
R(t)=50+10.36366769"* +965.7904000 "° +18474.54567¢**

From o =0.75, (22—25) obtained
S(t): 600—52556.10863¢"" —1.38784649010°+"° +1.52269178310%+**
E(t): 250+52543.21506¢"" +1.38615606010°¢'*° +1.52291000010° #**

1(£)=100-7.507650240¢"7 +724.8543000¢"*° +13825.42453¢**
R(t)=50+10.36366769"" +965.7904000¢ ** +18474.54567¢**
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Differential Transform Method

The following recurrence relation to the system (4) with respected to time (t) is obtained
k k

Sk +1)= L{Aa(k)_ B3 Sk -1)- 55 S0)k—1)~ ,,s(k)}

k+1 i=0 i=0

E(k+1)= ﬁ{ﬂiS(Z)E(k ~1)+ ﬂis(z)l(k D)+ (k)= (u+5+ k)E(k)}
+ i=0 i=0 (30)

1o+ 1) =[O0~ s 1, + )

Rlk+1) = [ k(K- (k)

The inverse differential transform of S(k)is defined as: When ¢, is taken as zero, the given function

3
y(x) is declared by a finite series and above equation can be written in the form S(r) = > S(k)i*
k=0

By solving the above equation for § (k+1),E(k+1), 1 (k+1) and R(k+1) up to order 3 we get the
function § (k), E(k),l (k) and R(k) of respectively

(31)

S(t)=600-48302.350¢ —1.38784649010°¢% +1.52259178310°¢°
E(t)=250+48290.500¢ +1.38615606010°¢% +1.52291485310°°
1(t)=100—-6.900¢ + 724.8543000¢* +13821.32453¢°
R(t)=50+9.800¢ +965.7904000¢> +18473.535677¢°

(32)
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NUMERICAL RESULTS

Table 3: Numerical solution of the proposed model using LADM at a =1

Time S() E(t) 1(t) R(t)
(week) t
0 600 250 100 50
0.2 1.15357909610° | -1.15297365810° | 238.2175682 | 238.3879814
0.4 9.50445103310° | -9.50527283010° | 1098.043858 | 1390.817387
0.6 3236213636107 | -3.236661552107 | 3343.099246 | 4394.066409
0.8 7703555566107 | -7.704696972107 | 7637.004111 | 10134.91324
1.0 1.50833629510° | -1.50856303410% | 14643.37883 | 19500.13607

Table 4: Numerical solution of the proposed model using DTM at a =1

Time S(t) E(t) 1(t) R(t)

(week) ¢
0 600 250 100 50
0.2 1.153520868 10° | -1.15299931210° | 238.1847682 | 238.3799014
0.4 9.50389811810° | -9.505390978 10° | 1097.781458 | 1390.752747
0.6 3.236017231107 | -3.23669162910 | 3342.213646 | 4393.848249
0.8 7703078400107 | -7.704756655107 | 7634.904911 | 10134.39612
1.0 1.50824173710% | -1.50857333010°% | 14639.27883 | 19499.12607

The plots below show the population of each compartment for different values of ¢, (z' = 1,2,3,4)
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5.=x 10194
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Figure 1: The behavior of the susceptible students
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Figure 2: The behavior of the exposed students
70000
60000
50000
40000
K9 -
30000 -
20000
10000

Figure 3: The behavior of the infected students
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Figure 4: The behavior of the removed (quitters) students

The comparison plots of the LADM and DTM of different compartments
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Figure 5: The comparison between the susceptible students using LADM and DTM
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Figure 6: The comparison between the exposed students using LADM and DTM
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Figure 7: The comparison between the exposed students using LADM and DTM
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Figure 8: The comparison between the exposed students using LADM and DTM

CONCLUSIONS

This paper employed Caputo-type fractional modeling to study the dynamics of examination
misconduct among students. The investigation focused on obtaining the numerical solution using
the Laplace-Adomian Decomposition Method (LADM), a powerful tool widely utilized for
solving nonlinear models in engineering and applied mathematics. A significant contribution lies
in utilizing the Laplace-Adomian Decomposition method to derive the series solution for the
fractional model and comparing these outcomes with the classical Differential Transform Method
(DTM). The study highlights the strong agreement between the solutions obtained via these
methods, demonstrated through tables and graphs. Moreover, the paper illustrates the impact of

fractional parameters on our derived solutions using graphical representations.
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